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ABSTRACT
The main idea of the present work is to extend Eringen’s theory of nonlo-
cal elasticity to generalized thermoelasticity with dual-phase-lag and voids.
Then we study the propagation of time harmonic plane waves in an infin-
ite nonlocal dual-phase-lag thermoelastic medium with voids. Three sets of
coupled dilatational waves and an independent transverse wave may travel
with distinct speeds through the medium. All these waves are found to be
dispersive in nature. The coupled dilatational waves are damping, while
the transverse wave is undamped in a certain range of the angular fre-
quency. Coupled dilatational waves are found to be influenced by the
presence of voids, thermal field and elastic nonlocal parameter, while the
transverse wave is found to be influenced by the nonlocal parameter, but
independent of void and thermal parameters. For a particular model, the
effects of angular frequency, elastic nonlocality parameter, and some voids
and thermal parameters on the wave speeds and damping coefficients of
all the propagating waves have been studied numerically. Some compari-
sons are made between the results obtained for local and nonlocal cases.
All the computed results have been depicted graphically and explained
in details.
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Introduction

In Eringen’s nonlocal elasticity model [1], the stress field at a particular point of an elastic con-
tinuum body not only depends on the strain field at that point, but also on the strains at all other
points of the body. Hence, the nonlocal continuum theory contains information about long range
forces of atoms or molecules and, thus, an internal length scale parameter can be introduced in
the formulation. Nonlocal elasticity theories have been applied to the problems of harmonic plane
wave propagation in classical and nonclassical elastic materials. To name a few such works are
Eringen [2,3] and Roy et al. [4] who investigated Rayleigh wave propagation in a rotating nonlo-
cal magnetoelastic half-plane. Narendra [5] studied spectral finite element and nonlocal con-
tinuum mechanics based formulation for torsional wave propagation in nano-rods. Chirita [6]
discussed thermoelastic surface waves on an exponentially graded half space. Khurana and Tomar
[7] studied wave propagation in nonlocal microstretch solid. Rayleigh wave propagation in nonlo-
cal micropolar elastic half-space and in nonlocal elastic half-space with voids has been studied
respectively by Khurana and Tomar [8] and Kaur et al. [9]. Reflection and refraction of plane
waves at a plane interface between two distinct nonlocal micropolar elastic solids half-spaces have
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also been studied recently by Khurana and Tomar [10]. Singh et al. [11] studied waves in nonlo-
cal elastic solid with voids. Bachher and Sarkar [12] established a nonlocal theory of thermoelastic
materials with voids and fractional derivative heat transfer. They also applied this model to study
the interactions in thermoelastic infinite medium with voids due to a time-dependent heat sour-
ces. Biswas and Sarkar [13] reported fundamental solution of the steady oscillations equations in
porous thermoelastic medium with dual-phase-lag model. Recently, Sarkar and Tomar [14]
reported plane waves in nonlocal thermoelastic solid with voids by adopting nonlocal effects in
the generalized thermoelasticity with voids [15].

In the present work, the propagation of plane time harmonic waves is investigated in an infin-
ite nonlocal dual-phase-lag thermoelastic solid body having void pores based on Eringen’s nonlo-
cal elasticity [1]. It has been found that four basic plane waves consisting of three sets of coupled
longitudinal (dilatational) waves and one independent transverse wave may travel with distinct
speeds in the medium. All these waves are found to be dispersive in nature.

The coupled dilatational waves are damping, while the transverse wave is undamped in a cer-
tain range of the angular frequency. Coupled dilatational waves are found to be influenced by the
presence of voids, thermal field and elastic nonlocal parameter, while the transverse wave is found
to be influenced by the nonlocal parameter only. For a particular model, we highlight the effects
of angular frequency, elastic nonlocality parameter, and some void and thermal parameters
numerically on the wave speeds and damping coefficients of all the propagating waves. Some
comparisons are made between the results obtained for local and nonlocal cases. All the com-
puted results are depicted graphically and discuss.

Field equations and constitutive relations

Within the framework of Eringen’s theory of nonlocal elasticity [1], the constitutive relations for
thermoelastic solid with voids are given by [12,14]

1� e2r2ð Þsij ¼ sLij ¼ 2leij þ kekk þ b/� chð Þdij; (1)

1� e2r2ð Þhi ¼ hLij ¼ a/;i; (2)

1� e2r2ð Þg ¼ gL ¼ s _/�n/�bekk þmh; (3)

1� e2r2ð Þqg ¼ qgð ÞL ¼ cekk þ ahþm/; (4)

where the quantities sLij; h
L
i ; g

L; and (qg)L correspond the local thermoelastic solid with voids and
dij is the Kronecker delta. Other symbols have their usual meanings and borrowed from [12].

The nonlocal generalization of the dual-phase-lag heat conduction law for thermoelastic mate-
rials with voids is postulated as (see [12,16–18] for details)

1� e2r2ð Þ qþ sq _qþ 1
2
d1rs

2
q€qÞ ¼ K 1þ d1rsT

@

@t

� �
rh;

�
(5)

where q is the heat flux vector, K is the thermal conductivity, sT is called the phase-lag of tem-
perature gradient while sq is the phase-lag of heat flux. Superposed dot represents temporal
derivative. For dual-phase-lag [17,18] thermoelastic model, we put r¼ 1 in Eq. (5) and for Lord-
Shulman [19] thermoelastic model, r 6¼ 1.

Within the linear theory of thermoelastic material with voids [15], the energy equation has the
form (in absence of heat source)

qT0 _g ¼ r � q; (6)

where g and T0 are respectively the entropy and ambient temperature.
Equations of motion for a nonlocal isotropic thermoelastic solid with voids in absence of the

body force and extrinsic equilibrated body force are given by [15]
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sij;j ¼ q€ui; (7)

hi;i þ g ¼ qv€/; (8)

where v is the equilibrated inertia and q is the bulk density. A comma (,) occurring in the sub-
script represents the spatial derivative.

Inserting the relations given through (1)–(4), into Eqs. (6)–(8), we obtain the field equations
in terms of displacement, volume fraction and temperature for homogeneous and isotropic non-
local thermoelastic material with voids as

lr2uþ kþ lð Þr r � uð Þ þ br/�crh ¼ q 1� e2r2ð Þ€u; (9)

ar2/�n/�s _/�br � uþmh ¼ qv 1� e2r2ð Þ€/; (10)

K 1þ d1rsT
@

@t

� �
r2h ¼ 1þ sq

@

@t
þ 1
2
d1rs

2
q
@2

@t2

� �
qCe

_h þ cT0r � _uþmT0
_/

� �
; (11)

where aT0 ¼ qCe and Ce is the specific heat at constant strain.

Wave propagation

Introducing the scalar and vector potentials E and X, respectively through the Helmholtz vector
decomposition theorem as

u ¼ rEþr�X; r �X ¼ 0; (12)

and plugging these into Eqs. (9)–(11), we obtain the following equations as

b/þ kþ 2lð Þr2E�ch�q 1�e2r2ð Þ€E ¼ 0; (13)

lr2X�q 1� e2r2ð Þ €X ¼0; (14)

ar2/�n/�s _/�br2Eþmh�qv 1� e2r2ð Þ€/ ¼ 0; (15)

K 1þ d1rsT
@

@t

� �
r2h ¼ 1þ sq

@

@t
¼ 1

2
d1rs

2
q
@2

@t2

� �
qCe

_h þ cT0r2 _E þmT0
_/

� �
: (16)

Note that Eqs. (13), (15), and (16) are coupled through the quantities E, h, and /, while Eq.
(14) is uncoupled. To seek the plane harmonic wave solutions of Eqs. (13)–(16) propagating in
the positive direction of a unit vector n with speed c, we take the form of various potentials as
[11,20–22]

/; h;E;Xf g ¼ A/;Ah;AE;Bf g exp ik n � r�ctð Þ� �
; (17)

where A/, Ah, and AE are constant amplitudes, which may be complex, i ¼ ffiffiffiffiffiffiffi�1
p

is imaginary
number, B is a vector constant, r (¼ x̂ı þ ŷj þ zk̂) is the position vector and k is the real wave-
number. The quantities k and c are connected with angular frequency x through the relation x
¼ kc. Moreover, in view of dissipative character of dual-phase-lag thermoelastic theory, we con-
sider c as

c ¼ R cð Þ þ iI cð Þ: (18)

For the waves to be physically realistic, we should have

R cð Þ � 0 and I cð Þ � 0; (19)

Here <(c) � 0 gives the wave speed, while I(c) � 0 describes the damping in time of the cor-
responding propagating wave. Also we note that,

� I(c) ¼ 0 gives undamped wave in time;
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� I(c) < 0 corresponds to a damped wave in time, decaying exponentially like exp[kI(c)t] to
zero as time t ! 1;

� <(c) ¼ 0 together with I(c) < 0 generates a standing damped wave in time whose amplitude
decays exponentially with time t.

Plugging the expressions of various entities given in (17) into Eqs. (13), (15), and (16), we
obtain

b1A/ þ x2 � c2l � e2x2
� �

k2
	 


AE�c1Ah ¼ 0; (20)

x2 � n1 þ is1x� a1 � e2x2
� �

k2
	 


A/ þ b2k
2AE þm1Ah ¼ 0; (21)

e2x
2A/�e1x

2k2AE þ x2 � K�

s�
k2 1� isTxd1rð Þ

� �
Ah ¼ 0; (22)

where

c2l ¼
kþ 2l

q
; b1 ¼

b
q
; c1 ¼

c
q
; a1 ¼ a

qv
; n1 ¼

n
qv

; s1 ¼ s
qv

; b2 ¼
b
qv

;

m1 ¼ m
qv

; K� ¼ K
qCe

; e1 ¼ cT0

qCe
; e2 ¼ mT0

qCe
; s� ¼ sq þ l

x
1� 1

2
s2qx

2

� �
:

Here cl is the speed of classical longitudinal wave. Equations (20)–(22) are the system of homoge-
neous equations in three unknowns, namely, A/, AE, and Ah. For a nontrivial solution of these
equations, the determinant of the coefficient matrix must vanish, which yields

H1 c6 þH2 c4 þH3 c2 þH4 ¼ 0; (23)

where

H1 ¼ m1e2�x2 þ n1�is1x; H4 ¼ K�

s�
x2 1� isTxd1rð Þ a1 � e2x2

� �
c2l � e2x2
� �

;

H2 ¼ x2 a1 � e2x2
� �

� c2l � e2x2
� �

H1 þ m1e2 �H1ð Þ K�

s�
1� isTxd1rð Þ þ c1e1

� �
þ b1b2 þm1b1e1 þ b2c1e2;

H3 ¼ � a1 � e2x2
� �

x2 c2l � e2x2
� �þ c1e1

	 

�K�

s�
1� isTxd1rð Þ x2 a1 � e2x2

� �
þ m1e2 � H1ð Þ c2l � e2x2

� �þ b1b2

h i
:

Equation (23) is the dispersion relation for plane wave propagation in an infinite nonlocal dual-
phase-lag thermoelastic medium with voids and provides speeds of propagation of various waves.
Note that this equation is cubic in c2 with complex coefficients, whose roots will provide us the
speed of three propagating waves. On solving the dispersion relation (23), one would get six com-
plex roots, that is, ±cj, j¼ 1, 2, 3. Corresponding to these roots, there exist three sets of coupled
longitudinal waves, namely, PI � wave propagating with speed <(c1), PII � wave propagating
with speed <(c2), and PIII � wave propagating with speed <(c3). It can be noticed that the values
of c0js are complex, indicating that the corresponding waves are damped in time.

Next, plugging the expression of X from (17) into (14), we get

c4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t�e2x2

q
; (24)

where ct (¼
ffiffiffiffiffiffiffiffi
l=q

p
) is the speed of classical transverse wave. Relation (24) gives the speed of a

transverse wave in the nonlocal thermoelastic medium with voids, which is real for given real
value of x lying in the range 0 < x<xc, xc ¼ ct/e. It is clear from the expression of the speed
c4 that the transverse wave speed is independent of thermal and void parameters and travels
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slower than that in the classical local elastic solid. This reduction in the speed of the transverse
wave is due to the presence of nonlocal parameter e in the thermoelastic material. We also note
from (24) that the speed of the transverse wave vanishes at x ¼ xc. This means that the speed c4
will remain purely real for x < xc, zero for x ¼ xc and purely imaginary for x > xc. Thus we
can state that the transverse wave is propagating with speed V4 ¼ <(c4) in the frequency range: 0
< x < xc, and the wave is no more a propagating wave outside the range of the values of the
frequency delimited by this frequency range. This shows that x ¼ xc acts as a cutoff frequency
for the existing transverse wave, a conclusion in accordance with that earlier mentioned by
Sarkar and Tomar [14]. This is obviously acceptable since the transverse wave speed does not
influenced by the thermal effects. For x > xc, the transverse wave becomes a standing damped
in time wave whose amplitude decays exponentially like exp ð�kt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2x2�c2t

p
Þ with time t.

It is clear that I(c4) ¼ 0 in the range 0 < x�xc, showing that the transverse wave is
undamped in time within the range 0 < x < xc. We also note that the longitudinal waves propa-
gating with speeds Vj ¼ <(cj) (j¼ 1, 2, 3), depend upon the angular frequency x and hence all
the existing waves are dispersive in nature. Moreover, it is interesting to note that the transverse
wave also depends on x, showing that the transverse wave is also dispersive in nature due to the
presence of the elastic nonlocality in the medium while it is nondispersive in nature in case of
local (e ¼ 0) medium. The presence of nonlocality parameter e in the expressions of all the wave
speeds shows that these waves are influenced by the nonlocality of the medium.

In order to investigate the nature of dilatational waves, inserting the expression of the potential
E from (17) into (12), we obtain the displacement vector u as

u ¼ ikb1n exp ik n � r� ctð Þ� �
; (25)

which shows that the displacement vector u is parallel to the vector n. Thus, the particle motion
associated with the potential E is in the direction of wave propagation. Hence, the waves propa-
gating with speeds Vj (j¼ 1, 2, 3) are all longitudinal in nature as the potentials E, h, and / are
all coupled through the relations (20)–(22). Similarly, inserting X from (17) into (14), we notice
that the particle motion associated with the potential X is normal to the direction of wave propa-
gation n and consequently the corresponding wave propagating with speed V4 is transverse
in nature.

Special cases

Local thermoelastic solid with voids

If the nonlocality effect is neglected from the medium, then we shall be left with thermoelastic
medium with voids only. Substituting e¼ 0 in (23), we get

~Ac6 þ ~Bc4 þ ~Cc2 þ ~D ¼ 0; (26)

where

~A ¼ m1e2�x2 þ n1�is1x; ~D ¼ K�

s�
a1x

2c2l 1� isTd1rð Þ;
~B ¼ a1x2�c2l ~A þ m1e2 � ~A

� � K�

s�
1� isTxd1rð Þ þ c1e1

� �
þ b1b2 þm1b1e1 þ b2c1e2;

~C ¼ �a1 c2l x
2 þ c1e1

� ��K�

s�
1� isTxd1rð Þ a1x

2 þ c2l m1e2 � ~A
� �

þ b1b2

h i
:

Equation (26) provides us the speed of propagation of dilatational waves in thermoelastic medium
with voids and dual-phase-lag (r¼ 1) as well as for the L-S theory (r 6¼ 1). Similarly, by setting e
¼ 0 into Eq. (24), we see that the speed of transverse wave in thermoelastic medium with voids
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reduces to the classical transverse wave speed, a result recently obtained by Sarkar and Tomar
[14] in the relevant medium when r 6¼ 1.

Local thermoelastic solid without voids

In the absence of void and nonlocal effects, the medium will become thermoelastic medium. To
achieve this, we substitute a1 ¼ b1 ¼ b2 ¼ n1 ¼ s1¼m1¼ �2 ¼ e¼ 0 in the dispersion relation
(26) to obtain

s�c4�d1c
2 þ c2l K

� 1� isTxd1rð Þ ¼ 0; s� 6¼ 0; (27)

where d1 ¼ s�ðc2l þ c1e1Þ þ K�ð1� isTxd1rÞ: Here, the speed of coupled dilatational waves are
given by

2s�c�1;2 ¼ d16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21�4c2l K

�s� 1� isTxd1rð Þ:
q

(28)

For r 6¼ 1, Eq. (28) gives the coupled longitudinal wave velocities for Lord-Shulman thermo-
elastic model [19] which are recently obtained by Sarkar and Tomar [14].

We have obtained the dispersion relation (23) in the “velocity-frequency” domain for the pre-
sent study. As a special case of our present work, we now wish to obtain the dispersion relation
for wave propagation in the time differential dual-phase-lag thermoelastic medium [17,18] in
“velocity-wavenumber” domain as reported by Chirita, Ciarletta, and Tibullo in their notable
work [23]. For this purpose, we rewrite Eq. (27) as follows:

i
k

1� isqkc� 1
2
s2qk

2c2
� �

qc3� i
k
qc2l 1� isqkc� 1

2
s2qk

2c2
� �

þ Kc
Ce

1� isTkcð Þ
� �

cþ Kc2l
Ce

1� isTkcð Þ

� i
k
c2T0c
qCe

1� isqkc� 1
2
s2qk

2c2
� �

¼ 0:

On factorization, above equation reduces to

qc2l � qc2
� �

K 1� isTkcð Þ � i
k
qCec 1� isqkc� 1

2
s2qk

2c2
� �� �

� i
k
c2T0c 1� isqkc� 1

2
s2qk

2c2
� �

¼ 0:

Now, if we use the notations of Chirita, Ciarletta and Tibullo [23], that is if we write i, v, t,
aT0, k, and b in place of i, k, c, qCe, K, and c, respectively, then the above equation further sim-
plified to

kþ 2l� qt2
� �

k� ivtksT � i
v
aT0t 1� ivtsq � 1

2
v2t2s2q

� �" #
� i
v
b2T0t 1� ivtsq � 1

2
v2t2s2q

� �
¼ 0;

(29)

Equation (29) is exactly same with the Eq. (3.7) obtained by Chirita, Ciarletta, and Tibullo
[23]. Furthermore, if we substitute

t ¼ ic2w; c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l

.
;

s
c2 ¼

ffiffiffi
l
.

r
; e ¼ b2T0

.aT0c21
;

then the Eq. (29) becomes

1þ c22
c21
w2

 !�
1þ vsTc2wÞ þ aT0c2

vk
w 1þ vsqc2wþ 1

2
v2s2qc

2
2w

2

� ��
þ eaT0c2

vk
w 1þ vsqc2wþ 1

2
v2s2qc

2
2w

2

� �
¼ 0;

(30)
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which is in complete agreement with the dispersion equation (3.17) as reported by Chirita,
Ciarletta, and Tibullo [23]. So, one may obtain the results represented by Chirita and Tibullo [23]
from the dispersion relation (30).

Nonlocal thermoelastic solid without voids

If we neglect the void effects only, then we shall be left with nonlocal thermoelastic medium. For
this, setting a1 ¼ b1 ¼ b2 ¼ n1 ¼ s1¼m1¼ �2¼ 0 into Eq. (23), we obtain the following quad-
ratic equation

c4��Bc2 þ �C ¼ 0; (31)

where

�B ¼ c2l�e2x2 þ c1e1 þ
K�

s�
1� isTxd1rð Þ; �C ¼ K�

s�
1� isTxd1rð Þ c2l � e2x2

� �
:

In this case, the speeds of the coupled dilatational waves become

c21;2 ¼
�B6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4C

p

2
; (32)

whereas the speed of the transverse wave remains unchanged. These results have been recently
obtained by Sarkar and Tomar [14].

Nonlocal elastic solid with voids

If we neglect the thermal effects, that is, for K* ¼ c1¼ �1¼ �2¼m1¼ 0, the cubic equation (23)
reduces to the following quadratic equation in c2 as

Ac4 þ Bc2 þ C ¼ 0; (33)

where

A ¼ q qvx2 þ isx� n
� �

; B ¼ 2q2ve2x4 þ iqse2x3 v kþ 2lð Þ þ aþ e2n
	 
þ kþ 2lð Þ n� isxð Þ�b2;

C ¼ q2ve4x6�qe2 v kþ 2lð Þ þ a½ 	x4 þ a kþ 2lð Þx2:

Equation (33) is earlier reported by Singh et al. [11] for the relevant medium.

Nonlocal elastic solid without voids

If we neglect the thermal and void effects simultaneously from the medium, then we shall be left
with an elastic medium having nonlocality only. In this case, the speed of the coupled dilatational
waves are obtained from Eq. (32) as

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2l�e2x2

q
and c2 ¼ 0: (34)

and the speed of the transverse wave remains the same as it is independent of thermal and void
parameters. We notice that in the absence of thermal and void effects, that is, when only the elas-
tic nonlocality presents in the medium, the square of the speeds of the dilatational and transverse
waves are frequency dependent and both reduced by the same amount equal to e2 x2.
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Classical elastic solid

In the absence of nonlocality, thermal and void effects from the medium, we note from Eq. (34)
that the speed of the coupled dilatational waves reduce to c1¼ cl and c2¼ 0, while the speed of
the transverse wave reduces to c4¼ ct. Thus, all the waves of classical elasticity are successfully
recovered as was expected beforehand.

Nonlocal non-Voigt thermoelastic solid with voids

A solid body with void pores is said to be non-Voigt if its viscous type behavior is absent, that is,
s ¼ 0. Substituting s ¼ 0 in the dispersion relation (23), we can obtain the dispersion relation
for nonlocal non-Voigt thermoelastic solid. In this case, the speed of longitudinal waves will be
affected, while the transverse wave is already independent of void parameters, hence unaffected.

Numerical results and discussion

In this section, we perform some numerical computations to study the wave propagation charac-
teristics through a nonlocal dual-phase-lag thermoelastic material with void pores. For this pur-
pose, we have borrowed the values of relevant material parameters from Sarkar and Tomar [14]
and Sing et al. [11] which are given in Table 1.

Using the Table 1 values, the wave speeds Vj ¼ <(cj) and the damping coefficients Dj ¼ I(cj),
where j¼ 1, 2, 3, 4 of the existing waves are computed by solving Eq. (23) for various cases. In
our computational work, we made nonlocal parameter dimensionless by defining � ¼ e/d, where
the value of the parameter d is taken unit nanometer (see [7] for details).

We made some graphical representations for the wave speeds and damping coefficients against
the angular frequency x ranging from 10 to 103 taking �¼ 1.0 through Figure 1a–f and we can
make the following conclusions:

� From Figure 1a, c, e, we observed that the coupled dilatational waves propagate in local dual-
phase-lag thermoelastic medium having void pores with lager speed as compared to that in
nonlocal medium.

� From Figure 1b, d, f, we found smaller values for damping coefficients in local medium when
compared to that in case of nonlocal medium.

� It is also observed that, the wave speeds, in decreasing order, are as follows: V3, V1, V2

whereas for damping coefficients the fact is same but in reverse order. This is expected as
wave propagating with larger speed, experiences smaller damping in amplitude.
Another set of Figure 2a–f has been depicted for wave speeds and damping coefficients against

the dimensionless nonlocal parameter (0� �� 5) [7].

� In this set of figures, it is interesting to note that elastic nonlocality parameter e diminishes the
magnitudes in both the wave speeds and damping coefficients. This makes sense from Eq. (34).

Table 1. Numerical values of parameters.

Symbol Value Unit Symbol Value Unit

k 1.5� 1010 Pa m 7.5� 109 Pa
a 8� 109 Pa m2 b 1010 Pa
n 1.2� 1010 Pa m2 s 106 Pa s
v 0.16 kg/m3 T0 300 K
q 2� 103 J kg�1 deg�1 K 0.016� 10�3 W m�1 deg�1

Ce 3� 10� 9 N m�2 deg�1 m 2� 106 N m�2 deg�1

c 2.68� 106 s sT 0.015 s
sq 0.02
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� We find larger value in wave speeds and smaller value in damping coefficients for compara-
tively larger frequency.

� Comparing the wave speeds and corresponding damping coefficients together [i.e., (V1, D1);
(V2, D2); and (V3, D3)], it can be noticed that the coupled dilatational waves having smaller
damping propagate with larger speed.

Figure 1. Comparison of wave speeds and corresponding damping coefficients with respect to angular frequency x for local
(�¼ 0) and nonlocal (�> 0) medium.
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To exhibit the impact of x and � simultaneously in both the wave speeds and damping coeffi-
cients, we represent some three dimensional graphs through Figure 3a–f. The reverse order phe-
nomena between wave speeds and damping coefficients has been depicted from Figure 3a–f, no
matter whatever may be the values of x and �. All the features discussed in Figures 1a–f and
2a–f can be viewed at the same time here.

Figure 2. Comparison of wave speeds and corresponding damping coefficients with respect to dimensionless elastic nonlocality
parameter � for two different x.
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Figure 4a–f is plotted to analyze the influence of various coupling parameter of interest (b, c,
m) on the wave speeds and corresponding damping coefficients.

� The impact of thermoelastic coupling parameter c has been shown in Figure 4a, b for wave
speed V1 and corresponding damping coefficient D1 for local and nonlocal medium. It is seen
that larger magnitudes of c raise the magnitudes in both V1 and D1.

Figure 3. Variations of wave speeds and corresponding damping coefficients with respect to x and � (dimensionless).
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� The effect of thermovoid coupling parameter m can be viewed through Figure 4c, d for wave
speed V2 and corresponding damping coefficient D2 for local and nonlocal medium. It is
observed that larger magnitudes of m diminish the magnitudes in both V2 and D2.

� The influence of elastovoid coupling parameter b can be noticed from Figure 4e, f for
wave speed V3 and corresponding damping coefficient D3 in local as well as nonlocal

Figure 4. Effects of various coupling parameters (b, c, m) on wave speeds and corresponding damping coefficients.

1046 S. MONDAL ET AL.



medium. It is depicted that larger magnitude of b reduces the magnitudes in both V3

and D3.
Figure 5a, b is drawn to analyze the effect of Voigt parameter s on the wave speed and corre-

sponding damping coefficient and we note the following facts:

Figure 5. Comparison of wave speed V1 and the corresponding damping coefficient D1 with respect to x for Voigt (s¼ 0) and
non-Voigt (s 6¼ 0) material.

Figure 6. Variations of the wave speed V4 and the corresponding damping coefficient D4 against x and �.
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� The wave speed in Voigt material is larger when compared to that in case of non-Voigt
material (see Figure 5a).

� In Figure 5b, we observed more damping in time in case of Voigt material when compared to
that in case of non-Voigt material.
Figure 6a, b displays the wave speed and corresponding damping coefficient of transverse

wave and we make the following remarks.

� From this figure, we note that the transverse wave is dispersive and undamped in time in the
range: 0 � x < 1936.49, beyond which the transverse wave is not a propagating wave. This is
the verification of a result pointed out theoretically in the text with the numerically obtained
result. It can also be verified that x 
 xc¼ 1936.49 is correct which is clearly reflected
through Figure 6a, b.

� The cutoff frequency xc varies inversely with e as ct is constant for a particular material. To
exhibit this phenomena, we present two more graphs through Figure 6c, d. Figure 6b, d
reflects the fact that the damping in time of the amplitude of transverse wave decays exponen-
tially, a result pointed out theoretically in the text.
At last, in order to make a comparison graphically with a result presented by Chirita,

Ciarletta, and Tibullo [23], Figure 7 has been plotted to show the behavior of the real part of the
root w2 of Eq. (30) versus sq (logarithmic scale) as in [23]. We conclude from this figure that our
numerically computed results agree with the existing literature by Chirita, Ciarletta, and Tibullo
[23] up to a satisfactory level. The pattern of the curve <(w2) is qualitatively same with the curve
obtained in Figure 1 by Chirita, Ciarletta, and Tibullo [23] with small deviation in magnitudes, as
we have used different values of the material parameters from those considered in [23].

Conclusions

The propagation of time harmonic plane waves in an infinite nonlocal dual-phase-lag thermoelas-
tic medium with voids has been explored. The elastic nonlocality in the thermal field has been
accounted through dual-phase-lag heat conduction law (5). From this study, we can infer the fol-
lowing important facts:

Figure 7. Variation of <(w2) of Eq. (30) with respect to sq (logarithmic scale).
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1. Four different types of time harmonic plane waves propagating with distinct wave velocities
travel in the medium considered consisting of three sets of coupled dilatational waves and an
independent transverse wave.

2. The sets of coupled longitudinal waves are found to be dispersive in nature and damping in
time. The transverse wave is dispersive and undamped up to the cutoff frequency xc, beyond
which the wave becomes undamped standing wave.

3. All the existing waves are found to be influenced by the nonlocality of the medium. The
speed of the transverse wave is reduced due to the presence of nonlocality in the medium.

4. The waves propagating with speeds Vi (i¼ 1, 2, 3) are influenced by the void parameters as
well as thermal parameters, whereas the wave propagating with velocity V4 is independent of
the these parameters.

5. Wave speeds are always remaining larger in case of local medium as compared to the nonlo-
cal medium.
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